Given the robust nature of learning sciences research, this website is best viewed on tablets and computers. A small screen experience is coming in the future.
On June 22, 2021, we will launch updated strategies for the Math PK-2 model, as well as additional updates to the Navigator that highlight equity, SEL, and culturally responsive teaching. To learn more, visit our Site Updates (available in the "About" menu at the top of any page).
Hover to see how factors connect to Long-term Memory. Then click connected factors to explore strategies related to multiple factors.
Long-term Memory can store information indefinitely. We can move skills and knowledge into Long-term Memory by repeatedly practicing. When students have math skills, background knowledge, and arithmetic facts in their Long-term Memory, they have the tools they need to tackle new math problems.
Information in Short-term Memory that is the focus of Attention can move to Long-term Memory, where it is available for use in other activities.
Explicit memory (declarative memory) refers to memories that can be consciously remembered.
Implicit (Nondeclarative) Long-term Memory stores the memories that do not require conscious thought.
Schemas exist in Long-term Memory as an organizational system for our current knowledge and provide a framework for adding future understanding. New information that comes into our Long-term Memory may be more readily encoded in memory when it is consistent with a current schema making learning easier when we have the appropriate Background Knowledge as context.
Building with blocks is ideal for promoting early geometric and Spatial Skills.
As students solve problems in a group, they learn new strategies and practice communicating their mathematical thinking.
Communication boards are displays of graphics (e.g., pictures, symbols, illustrations) and/or words where learners can gesture or point to the displays to extend their expressive language potential.
CRA is a sequential instructional approach during which students move from working with concrete materials to creating representational drawings to using abstract symbols.
Students activate more cognitive processes by exploring and representing their understandings in visual form.
Continual use of foundational skills with different problems reinforces a conceptual understanding of math skills.
10 minutes in each math session devoted to building fluent retrieval of basic math facts sets the foundation for learning new concepts.
Daily review strengthens previous learning and can lead to fluent recall.
Knowing the language of math is critical because students must use this language to understand math concepts and determine calculations needed.
In explicit number naming, the structure of the number name labels the number in Place Value order and clearly states the quantity.
Thinking of and about patterns encourages learners to look for and understand the rules and relationships that are critical components of mathematical reasoning.
Teaching students to recognize common problem structures helps them transfer solution methods from familiar to unfamiliar problems.
Discussing strategies for solving mathematics problems after initially letting students attempt to problem solve on their own helps them understand how to organize their mathematical thinking and intentionally tackle problems.
Dot cards build number sense and promote early math skills, particularly Spatial Skills and Non-symbolic Number knowledge.
When students explain their thinking process aloud with guidance in response to questions or prompts, they recognize the strategies they use and solidify their understanding.
Free choice supports learner interests and promotes the development of more complex social interactions.
As students walk through stations working in small groups, the social and physical nature of the learning supports deeper understanding.
Adding motions to complement learning activates more cognitive processes for recall and understanding.
In guided inquiry, teachers help students use their own language for constructing knowledge by active listening and questioning.
Teaching students through guided play encourages them to take an active role in their learning and supports the development of a broad array of cognitive skills.
Spending time with new content helps move concepts and ideas into Long-term Memory.
Imagining allows students to step back from a problem or task and think about it from multiple angles.
Learning about students' cultures and connecting them to instructional practices helps foster a sense of belonging and mitigate Stereotype Threat.
Practicing until achieving several error-free attempts is critical for retention.
Math centers with math games, manipulatives, and activities support learner interests and promote the development of more complex math skills and social interactions.
Math games use numbers and Spatial Skills, allowing students to practice many math skills in a fun, applied context.
Rhyming, alliteration, and other sound devices reinforce math skills development by activating the mental processes that promote memory.
When students have meaningful conversations about math and use math vocabulary, they develop the thinking, questioning, and explanation skills needed to master mathematical concepts.
A mnemonic device is a creative way to support memory for new information using connections to current knowledge, for example by creating visuals, acronyms, or rhymes.
By talking through their thinking at each step of a process, teachers can model what learning looks like.
Teachers sharing math-to-self, math-to-math, and math-to-world connections models this schema building.
Brain breaks that include movement allow learners to refresh their thinking and focus on learning new information.
Instruction in multiple formats allows students to activate different cognitive skills to understand and remember the steps they are to take in their math work.
Multiple display spaces help develop oral language skills as well as Social Awareness & Relationship Skills by allowing groups to share information easily as they work.
Visualizing how ideas fit together helps students construct meaning and strengthen recall.
Providing physical representations of numbers and math concepts helps activate mental processes.
Easy access to seeing the relationships between numbers promotes number sense as students see these connections repeatedly.
Visual representations help students understand what a number represents as well as recognize relationships between numbers.
Multiple writing surfaces promote collaboration by allowing groups to share information easily as they work.
Connecting information to music and dance can support Short-term and Long-term Memory by engaging auditory processes, Emotions, and physical activity.
Research shows physical activity improves focus and creativity.
When students reframe negative thoughts and tell themselves kind self-statements, they practice positive self-talk.
Project-based learning (PBL) actively engages learners in authentic tasks designed to create products that answer a given question or solve a problem.
Cards with strategies for managing emotions help students remember how to act when faced with strong feelings.
When teachers connect math to the students' world, students see how math is relevant and applicable to their daily lives.
Students deepen their understanding and gain confidence in their learning when they explain to and receive feedback from others.
Providing space and time for students to reflect is critical for moving what they have learned into Long-term Memory.
Response devices boost engagement by encouraging all students to answer every question.
Math games and manipulatives for vision differences support math development for learners with visual needs.
Children's literature can be a welcoming way to help students learn math vocabulary and concepts.
Selecting culturally responsive materials, including multicultural and diverse resources, is critical for supporting all students.
Transforming written text into audio activates different parts of the brain to support learning.
Students develop their skills by listening to and speaking with others in informal ways.
Three-phase lesson format is a problem-solving structure to promote meaningful math learning by activating prior knowledge, letting students explore mathematical thinking, and promoting a math community of learners.
Tossing a ball, beanbag, or other small object activates physical focus in support of mental focus.
Having students verbally repeat information such as instructions ensures they have heard and supports remembering.
Providing visuals to introduce, support, or review instruction activates more cognitive processes to support learning.
Visual supports, like text magnification, colored overlays, and guided reading strip, help students focus and properly track as they read.
Wait time, or think time, of three or more seconds after posing a question increases how many students volunteer and the length and accuracy of their responses.
A word wall helps build the mathematical vocabulary and Language Skills that are necessary for problem solving.
Are you sure you want to delete this Workspace?
Enter the email address of the person you want to share with. This person will be granted access to this workspace and will be able to view and edit it.
Adjust the permissions of your Workspace.
This Workspace is .
This Workspace's Reflection Area is .
Learner variability is the recognition that each learner is a unique constellation of strengths and challenges that are interconnected across the whole child. Understanding these connections and how they vary according to context is essential for meeting the needs of each learner.
It disrupts the notion of a one-size-fits all education. Understanding learner variability helps educators embrace both students’ struggles and strengths as we connect practice to uplifting the whole learner.
Throughout the site, we talk about "factors" and "strategies." Factors are concepts research suggests have an impact on how people learn. Strategies are the approaches to teaching and learning that can be used to support people in how they learn best.
Use the Learner Centered Design Tool to build a workspace. Go to Learner Centered Design Tool.
Or, create a new blank workspace for your product or project.
Use one of the guided tools to build a workspace.
Or, create a new blank workspace for your product or project.
Make a copy of this workspace.
Redirecting soon...
Generating summary page
Loading...
On this page, using your heatmap, you will be asked to select factors to further explore, and then select new strategies you might incorporate into upcoming instruction. Once done, click “Show Summary" to view your Design Summary Report.
On this page, using your heatmap, you will be asked to select factors to further explore, and then select new strategies you might incorporate into upcoming instruction. Once done, click “Show Report” to view your Design Summary Report.
By selecting "Show Report" you will be taken to the Assessment Summary Page. Once created, you will not be able to edit your report. If you select cancel below, you can continue to edit your factor and strategy selections.
Announcement here
Item successfully added to workspace!
Issue adding item to workspace. Please refresh the page and try again.
Learner variability is the recognition that each learner is a unique constellation of strengths and challenges that are interconnected across the whole child. Understanding these connections and how they vary according to context is essential for meeting the needs of each learner. It embraces both students’ struggles and strengths. It considers the whole child.
Throughout the site, we talk about "factors" and "strategies." Factors are concepts research suggests have an impact on how people learn. Strategies are the approaches to teaching and learning that can be used to support people in how they learn best.
The Learner Variability Navigator is a free, online tool that translates the science of learner variability into factor maps and strategies that highlight connections across the whole learner. This puts the science of learning at teachers' fingertips, empowering them to understand their own practice and support each learner.