Given the robust nature of learning sciences research, this website is best viewed on tablets and computers. A small screen experience is coming in the future.
On June 22, 2021, we will launch updated strategies for the Math PK-2 model, as well as additional updates to the Navigator that highlight equity, SEL, and culturally responsive teaching. To learn more, visit our Site Updates (available in the "About" menu at the top of any page).
Hover to see how factors connect to Math Learning Environment. Then click connected factors to explore strategies related to multiple factors.
A student's Math Learning Environment encompasses the opportunities provided by their home, school, and community that contribute to their development of math knowledge and skills. The experiences students have and the beliefs and attitudes toward math held by their peers, parents, and teachers can influence the development of students' math skills and Math Mindset.
A child's Home Learning Environment is critical to the development of early math skills. During the upper elementary years, students' Math Learning Environment expands to include their home, school, and community.
Analyzing incorrect worked examples is especially beneficial for helping students develop a conceptual understanding of mathematical processes.
Project-based learning (PBL) actively engages learners in authentic tasks designed to create products that answer a given question or solve a problem.
Math games allow students to practice many math skills in a fun, applied context.
When students create their own number and word problems, they connect math concepts to their background knowledge and lived experiences.
Analyzing and discussing solved problems helps students develop a deeper understanding of abstract mathematical processes.
As students solve problems in a group, they learn new strategies and practice communicating their mathematical thinking.
As students walk through stations working in small groups, the social and physical nature of the learning supports deeper understanding.
As students work with and process information by discussing, organizing, and sharing it together, they deepen their understanding.
When students have meaningful conversations about math and use math vocabulary, they develop the thinking, questioning, and explanation skills needed to master mathematical concepts.
Having students teach their knowledge, skills, and understanding to their classmates strengthens learning.
Students deepen their understanding and gain confidence in their learning when they explain to and receive feedback from others.
Students deepen their math understanding as they use and hear others use specific math language in informal ways.
Rhyming, alliteration, and other sound devices reinforce math skills development by activating the mental processes that promote memory.
Easy access to seeing the relationships between numbers promotes Number Sense as students see these connections repeatedly.
A word wall helps build the Math Communication and vocabulary skills that are necessary for problem solving.
Providing math tasks with high cognitive demand conveys high expectations for all students by challenging them to engage in higher-order thinking.
CRA is a sequential instructional approach during which students move from working with concrete materials to creating representational drawings to using abstract symbols.
Thinking of and about patterns encourages learners to look for and understand the rules and relationships that are critical components of mathematical reasoning.
In guided inquiry, teachers help students use their own language for constructing knowledge by active listening and questioning.
Math centers support learner interests and promote the development of more complex math skills and social interactions.
Through short but regular mindfulness activities, students develop their awareness and ability to focus.
When teachers connect math to the students' world, students see how math is relevant and applicable to their daily lives.
A strengths-based approach is one where educators intentionally identify, communicate, and harness students' assets, across many aspects of the whole child, in order to empower them to flourish.
Using multiple methods of assessment can help educators gain a comprehensive understanding of learner progress across a wide range of skills and content.
Providing physical and virtual representations of numbers and math concepts helps activate mental processes.
Connecting information to music and dance can support Short-term and Long-term Memory by engaging auditory processes, Emotions, and physical activity.
Math games and manipulatives for vision differences support math development for learners with visual needs.
Children's literature can be a welcoming way to help students learn math vocabulary and concepts.
Teachers can help students understand that learning involves effort, mistakes, and reflection by teaching them about their malleable brain and modeling their own learning process.
Attributing results to controllable aspects (strategy and effort) fosters students' beliefs in self.
By talking through their thinking at each step of a process, teachers can model what learning looks like.
Teachers sharing math-to-self, math-to-math, and math-to-world connections models this schema building.
Providing students a voice in their learning is critical for making learning meaningful.
Selecting culturally responsive materials, including multicultural and diverse resources, is critical for supporting all students.
Translanguaging is a flexible classroom practice enabling students to listen, speak, read, and write across their multiple languages or dialects, even if the teacher does not have formal knowledge of these additional languages.
Are you sure you want to delete this Workspace?
Enter the email address of the person you want to share with. This person will be granted access to this workspace and will be able to view and edit it.
Adjust the permissions of your Workspace.
This Workspace is .
This Workspace's Reflection Area is .
Learner variability is the recognition that each learner is a unique constellation of strengths and challenges that are interconnected across the whole child. Understanding these connections and how they vary according to context is essential for meeting the needs of each learner.
It disrupts the notion of a one-size-fits all education. Understanding learner variability helps educators embrace both students’ struggles and strengths as we connect practice to uplifting the whole learner.
Throughout the site, we talk about "factors" and "strategies." Factors are concepts research suggests have an impact on how people learn. Strategies are the approaches to teaching and learning that can be used to support people in how they learn best.
Use the Learner Centered Design Tool to build a workspace. Go to Learner Centered Design Tool.
Or, create a new blank workspace for your product or project.
Use one of the guided tools to build a workspace.
Or, create a new blank workspace for your product or project.
Make a copy of this workspace.
Redirecting soon...
Generating summary page
Loading...
On this page, using your heatmap, you will be asked to select factors to further explore, and then select new strategies you might incorporate into upcoming instruction. Once done, click “Show Summary" to view your Design Summary Report.
On this page, using your heatmap, you will be asked to select factors to further explore, and then select new strategies you might incorporate into upcoming instruction. Once done, click “Show Report” to view your Design Summary Report.
By selecting "Show Report" you will be taken to the Assessment Summary Page. Once created, you will not be able to edit your report. If you select cancel below, you can continue to edit your factor and strategy selections.
Announcement here
Item successfully added to workspace!
Issue adding item to workspace. Please refresh the page and try again.
Learner variability is the recognition that each learner is a unique constellation of strengths and challenges that are interconnected across the whole child. Understanding these connections and how they vary according to context is essential for meeting the needs of each learner. It embraces both students’ struggles and strengths. It considers the whole child.
Throughout the site, we talk about "factors" and "strategies." Factors are concepts research suggests have an impact on how people learn. Strategies are the approaches to teaching and learning that can be used to support people in how they learn best.
The Learner Variability Navigator is a free, online tool that translates the science of learner variability into factor maps and strategies that highlight connections across the whole learner. This puts the science of learning at teachers' fingertips, empowering them to understand their own practice and support each learner.