Given the robust nature of learning sciences research, this website is best viewed on tablets and computers. A small screen experience is coming in the future.
On June 22, 2021, we will launch updated strategies for the Math PK-2 model, as well as additional updates to the Navigator that highlight equity, SEL, and culturally responsive teaching. To learn more, visit our Site Updates (available in the "About" menu at the top of any page).
Hover to see how factors connect to Speed of Processing. Then click connected factors to explore strategies related to multiple factors.
Speed of Processing is the rate at which we perceive and process information and formulate an appropriate response. When we do math, we are perceiving an incredible array of information—numbers, shapes, symbols—and have to choose and apply the right skills for understanding it all. Supporting students as they develop their Speed of Processing skills helps them become quick, efficient, confident, and successful math students.
For math, Speed of Processing influences:
Students' Speed of Processing may be reduced during puberty due to an increase in neural connections that leads to less efficient cognitive processing. In addition, Speed of Processing is often affected for students with learning disabilities or ADHD and can impede reading, numerical tasks, and academic performance.
Content that is provided in clear, short chunks can support students' Working Memory.
As students solve problems in a group, they learn new strategies and practice communicating their mathematical thinking.
CRA is a sequential instructional approach during which students move from working with concrete materials to creating representational drawings to using abstract symbols.
Students activate more cognitive processes by exploring and representing their understandings in visual form.
Continual use of foundational skills with different problems reinforces a conceptual understanding of math skills.
Daily review strengthens previous learning and can lead to fluent recall.
Teaching students to recognize the structures of algebraic representations helps them transfer solution methods from familiar to unfamiliar problems.
Discussing strategies for solving mathematics problems after initially letting students attempt to problem solve on their own helps them understand how to organize their Algebraic Thinking and intentionally tackle problems.
Analyzing incorrect worked examples is especially beneficial for helping students develop a conceptual understanding of mathematical processes.
The flipped classroom has two parts: cooperative group activities in class and digitally-based individual instruction out of class.
As students walk through stations working in small groups, the social and physical nature of the learning supports deeper understanding.
In guided inquiry, teachers help students use their own language for constructing knowledge by active listening and questioning.
Spending time with new content helps move concepts and ideas into Long-term Memory.
Learning about students' cultures and connecting them to instructional practices helps foster a Sense of Belonging and mitigate Stereotype Threat.
Practicing until achieving several error-free attempts is critical for retention.
As students work with and process information by discussing, organizing, and sharing it together, they deepen their understanding.
Math centers with math games, manipulatives, and activities support learner interests and promote the development of more complex math skills and social interactions.
Math games allow students to practice many math skills in a fun, applied context.
Rhyming, alliteration, and other sound devices reinforce math skills development by activating the mental processes that promote memory.
When students have meaningful discussions about math and use math vocabulary, they develop the thinking, questioning, and explanation skills needed to master mathematical concepts.
Through short but regular mindfulness activities, students develop their awareness and ability to focus.
Short breaks that include mindfulness quiet the brain to allow for improved thinking and emotional regulation.
Multiple display spaces help develop oral language skills as well as Social Awareness & Relationship Skills by allowing groups to share information easily as they work.
Visualizing how ideas fit together helps students construct meaning and strengthens recall.
Providing physical and virtual representations of numbers and math concepts helps activate mental processes.
Visual representations help students understand what a number represents as well as recognize relationships between numbers.
Multiple writing surfaces promote collaboration by allowing groups to share information easily as they work.
Connecting information to music and dance can support Short-term and Long-term Memory by engaging auditory processes, Emotions, and physical activity.
Having students teach their knowledge, skills, and understanding to their classmates strengthens learning.
Decreasing extra audio input provides a focused learning environment.
When teachers connect math to the students' world, students see how math is relevant and applicable to their daily lives.
Students deepen their understanding and gain confidence in their learning when they explain to and receive feedback from others.
Response devices boost engagement by encouraging all students to answer every question.
Sentence frames or stems can serve as language support to enrich students' participation in academic discussions.
When students create their own number and word problems, they connect math concepts to their background knowledge and lived experiences.
Transforming written text into audio activates different parts of the brain to support learning.
Students deepen their math understanding as they use and hear others use specific math language in informal ways.
Untimed tests provide students the opportunity to flexibly and productively work with numbers, further developing their problem-solving abilities.
Providing visuals to introduce, support, or review instruction activates more cognitive processes to support learning.
Wait time, or think time, of three or more seconds after posing a question increases how many students volunteer and the length and accuracy of their responses.
Analyzing and discussing solved problems helps students develop a deeper understanding of abstract mathematical processes.
Are you sure you want to delete this Workspace?
Enter the email address of the person you want to share with. This person will be granted access to this workspace and will be able to view and edit it.
Adjust the permissions of your Workspace.
This Workspace is .
This Workspace's Reflection Area is .
Learner variability is the recognition that each learner is a unique constellation of strengths and challenges that are interconnected across the whole child. Understanding these connections and how they vary according to context is essential for meeting the needs of each learner.
It disrupts the notion of a one-size-fits all education. Understanding learner variability helps educators embrace both students’ struggles and strengths as we connect practice to uplifting the whole learner.
Throughout the site, we talk about "factors" and "strategies." Factors are concepts research suggests have an impact on how people learn. Strategies are the approaches to teaching and learning that can be used to support people in how they learn best.
Use the Learner Centered Design Tool to build a workspace. Go to Learner Centered Design Tool.
Or, create a new blank workspace for your product or project.
Use one of the guided tools to build a workspace.
Or, create a new blank workspace for your product or project.
Make a copy of this workspace.
Redirecting soon...
Generating summary page
Loading...
On this page, using your heatmap, you will be asked to select factors to further explore, and then select new strategies you might incorporate into upcoming instruction. Once done, click “Show Summary" to view your Design Summary Report.
On this page, using your heatmap, you will be asked to select factors to further explore, and then select new strategies you might incorporate into upcoming instruction. Once done, click “Show Report” to view your Design Summary Report.
By selecting "Show Report" you will be taken to the Assessment Summary Page. Once created, you will not be able to edit your report. If you select cancel below, you can continue to edit your factor and strategy selections.
Announcement here
Item successfully added to workspace!
Issue adding item to workspace. Please refresh the page and try again.
Learner variability is the recognition that each learner is a unique constellation of strengths and challenges that are interconnected across the whole child. Understanding these connections and how they vary according to context is essential for meeting the needs of each learner. It embraces both students’ struggles and strengths. It considers the whole child.
Throughout the site, we talk about "factors" and "strategies." Factors are concepts research suggests have an impact on how people learn. Strategies are the approaches to teaching and learning that can be used to support people in how they learn best.
The Learner Variability Navigator is a free, online tool that translates the science of learner variability into factor maps and strategies that highlight connections across the whole learner. This puts the science of learning at teachers' fingertips, empowering them to understand their own practice and support each learner.