Given the robust nature of learning sciences research, this website is best viewed on tablets and computers. A small screen experience is coming in the future.
On June 22, 2021, we will launch updated strategies for the Math PK-2 model, as well as additional updates to the Navigator that highlight equity, SEL, and culturally responsive teaching. To learn more, visit our Site Updates (available in the "About" menu at the top of any page).
Hover to see how factors connect to Physical Well-being. Then click connected factors to explore strategies related to multiple factors.
The benefits of physical health go beyond our bodies—our cognitive skills also improve with physical fitness. Our Physical Well-being involves proper nutrition, regular exercise, and quality Sleep. Students with good overall Physical Well-being benefit from improved cognitive skills, which in turn can boost academic performance including learning math. This can be especially important for those learners with ADHD as it supports cognition and focus.
Physical Well-being is dependent on several important components:
Adolescents experience many physical, cognitive, and social-emotional changes triggered by the beginning of puberty. Their Physical Well-being can also impact the timing of puberty which may be delayed by nutritional deficiencies or start earlier in girls who are obese. Physical Well-being is also tightly intertwined with psychological well-being (see Emotion). Each can have a significant impact on the other, and this interplay ultimately defines a student's overall health. For example, just like in adults, stress in children can lead to increased levels of stress hormones, high blood pressure, obesity, and other negative effects. Managing stress is an important part of maintaining Physical Well-being.
Students activate more cognitive processes by exploring and representing their understandings in visual form.
Analyzing incorrect worked examples is especially beneficial for helping students develop a conceptual understanding of mathematical processes.
Project-based learning (PBL) actively engages learners in authentic tasks designed to create products that answer a given question or solve a problem.
When students explain their thinking process aloud with guidance in response to questions or prompts, they recognize the strategies they use and solidify their understanding.
Math games allow students to practice many math skills in a fun, applied context.
When students create their own number and word problems, they connect math concepts to their background knowledge and lived experiences.
Analyzing and discussing solved problems helps students develop a deeper understanding of abstract mathematical processes.
As students solve problems in a group, they learn new strategies and practice communicating their mathematical thinking.
Flexible grouping is a classroom practice that temporarily places students together in given groups to work together, with the purpose of achieving a given learning goal or activity.
As students walk through stations working in small groups, the social and physical nature of the learning supports deeper understanding.
As students work with and process information by discussing, organizing, and sharing it together, they deepen their understanding.
When students have meaningful discussions about math and use math vocabulary, they develop the thinking, questioning, and explanation skills needed to master mathematical concepts.
Having students teach their knowledge, skills, and understanding to their classmates strengthens learning.
Students deepen their understanding and gain confidence in their learning when they explain to and receive feedback from others.
Students deepen their math understanding as they use and hear others use specific math language in informal ways.
Rhyming, alliteration, and other sound devices reinforce math skills development by activating the mental processes that promote memory.
A mnemonic device is a creative way to support memory for new information using connections to current knowledge, for example by creating visuals, acronyms, or rhymes.
A word wall helps build the Math Communication and vocabulary skills that are necessary for problem solving.
Providing math tasks with high cognitive demand conveys high expectations for all students by challenging them to engage in higher-order thinking.
CRA is a sequential instructional approach during which students move from working with concrete materials to creating representational drawings to using abstract symbols.
Thinking of and about patterns encourages learners to look for and understand the rules and relationships that are critical components of mathematical reasoning.
Discussing strategies for solving mathematics problems after initially letting students attempt to problem solve on their own helps them understand how to organize their Algebraic Thinking and intentionally tackle problems.
Teaching students to recognize the structures of algebraic representations helps them transfer solution methods from familiar to unfamiliar problems.
The flipped classroom has two parts: cooperative group activities in class and digitally-based individual instruction out of class.
In guided inquiry, teachers help students use their own language for constructing knowledge by active listening and questioning.
Math centers with math games, manipulatives, and activities support learner interests and promote the development of more complex math skills and social interactions.
Through short but regular mindfulness activities, students develop their awareness and ability to focus.
Instruction in multiple formats allows students to activate different cognitive skills to understand and remember the steps they are to take in their math work.
Writing that encourages students to articulate their understanding of math concepts or explain math ideas helps deepen students' mathematical understanding.
A strengths-based approach is one where educators intentionally identify, communicate, and harness students' assets, across many aspects of the whole child, in order to empower them to flourish.
Writing freely about one's emotions about a specific activity, such as taking a test, can help students cope with negative Emotion, such as math anxiety.
Setting overall goals, as well as smaller goals as steps to reaching them, encourages consistent, achievable progress and helps students feel confident in their skills and abilities.
When students reframe negative thoughts and tell themselves kind self-statements, they practice positive self-talk.
When students engage in a dialogue with themselves, they are able to orient, organize, and focus their thinking.
When students monitor their comprehension, behavior, or use of strategies, they build their Metacognition.
Adding motions to complement learning activates more cognitive processes for recall and understanding.
Short breaks that include mindfulness quiet the brain to allow for improved thinking and emotional regulation.
Brain breaks that include movement allow learners to refresh their thinking and focus on learning new information.
Providing physical and virtual representations of numbers and math concepts helps activate mental processes.
Connecting information to music and dance can support Short-term and Long-term Memory by engaging auditory processes, Emotions, and physical activity.
Incorporating multiple senses with strategies like chewing gum, using a fidget, and sitting on a ball chair supports focus and Attention.
Using earplugs or headphones can increase focus and comfort.
Transforming written text into audio activates different parts of the brain to support learning.
Visual supports, like text magnification, colored overlays, and guided reading strip, help students focus and properly track as they read.
Having space where students can go supports Self-regulation and individual deliberate practice.
Multiple tables and chairs on wheels allow for setting up the classroom to support the desired learning outcomes of each activity.
Multiple display spaces help develop oral language skills as well as Social Awareness & Relationship Skills by allowing groups to share information easily as they work.
Multiple writing surfaces promote collaboration by allowing groups to share information easily as they work.
Decreasing extra audio input provides a focused learning environment.
Spaces that are structured, organized, and clean provide increased room for collaboration and active learning.
Continual use of foundational skills with different problems reinforces a conceptual understanding of math skills.
Daily review strengthens previous learning and can lead to fluent recall.
Spending time with new content helps move concepts and ideas into Long-term Memory.
Practicing until achieving several error-free attempts is critical for retention.
Having students verbally repeat information such as instructions ensures they have heard and supports remembering.
Teachers support language development by using and providing vocabulary and syntax that is appropriately leveled (e.g., using simple sentences when introducing complex concepts).
Content that is provided in clear, short chunks can support students' Working Memory.
Building positive and trusting relationships with learners allows them to feel safe, a Sense of Belonging, and that their academic, cognitive, and social and emotional needs are supported.
Actively and authentically encouraging all students to seek support, ask questions, and advocate for what they believe in creates a safe space for risk-taking and skill development and supports a Sense of Belonging.
By talking through their thinking at each step of a process, teachers can model what learning looks like.
Maintaining consistent classroom routines and schedules ensures that students are able to trust and predict what will happen next.
Wait time, or think time, of three or more seconds after posing a question increases how many students volunteer and the length and accuracy of their responses.
Visualizing how ideas fit together helps students construct meaning and strengthens recall.
Visual representations help students understand what a number represents as well as recognize relationships between numbers.
Sentence frames or stems can serve as language support to enrich students' participation in academic discussions.
Providing visuals to introduce, support, or review instruction activates more cognitive processes to support learning.
Are you sure you want to delete this Workspace?
Enter the email address of the person you want to share with. This person will be granted access to this workspace and will be able to view and edit it.
Adjust the permissions of your Workspace.
This Workspace is .
This Workspace's Reflection Area is .
Learner variability is the recognition that each learner is a unique constellation of strengths and challenges that are interconnected across the whole child. Understanding these connections and how they vary according to context is essential for meeting the needs of each learner.
It disrupts the notion of a one-size-fits all education. Understanding learner variability helps educators embrace both students’ struggles and strengths as we connect practice to uplifting the whole learner.
Throughout the site, we talk about "factors" and "strategies." Factors are concepts research suggests have an impact on how people learn. Strategies are the approaches to teaching and learning that can be used to support people in how they learn best.
Use the Learner Centered Design Tool to build a workspace. Go to Learner Centered Design Tool.
Or, create a new blank workspace for your product or project.
Use one of the guided tools to build a workspace.
Or, create a new blank workspace for your product or project.
Make a copy of this workspace.
Redirecting soon...
Generating summary page
Loading...
On this page, using your heatmap, you will be asked to select factors to further explore, and then select new strategies you might incorporate into upcoming instruction. Once done, click “Show Summary" to view your Design Summary Report.
On this page, using your heatmap, you will be asked to select factors to further explore, and then select new strategies you might incorporate into upcoming instruction. Once done, click “Show Report” to view your Design Summary Report.
By selecting "Show Report" you will be taken to the Assessment Summary Page. Once created, you will not be able to edit your report. If you select cancel below, you can continue to edit your factor and strategy selections.
Announcement here
Item successfully added to workspace!
Issue adding item to workspace. Please refresh the page and try again.
Learner variability is the recognition that each learner is a unique constellation of strengths and challenges that are interconnected across the whole child. Understanding these connections and how they vary according to context is essential for meeting the needs of each learner. It embraces both students’ struggles and strengths. It considers the whole child.
Throughout the site, we talk about "factors" and "strategies." Factors are concepts research suggests have an impact on how people learn. Strategies are the approaches to teaching and learning that can be used to support people in how they learn best.
The Learner Variability Navigator is a free, online tool that translates the science of learner variability into factor maps and strategies that highlight connections across the whole learner. This puts the science of learning at teachers' fingertips, empowering them to understand their own practice and support each learner.